Bottom-up Parsing

Top-down versus Bottom-up Parsing

+ Top down:
= Recursive descent parsing
» LL(K) parsing
O Top to down and leftmost derivation

= Expanding from starting symbol (top) to gradually derive the input
string

O Can use a parsing table to decide which production to use next
O The power is limited

= Many grammars are not LL(K)

= |eft recursion elimination and left factoring can help make many
grammars LL(k), but after rewriting, the grammar can be very hard to
comprehend

O Space efficient
(1 Easy to build the parse tree

Top-down versus Bottom-up Parsing

» Bottom up:
O Also known as shift-reduce parsing
» LR family
= Precedence parsing

O Shift: allow shifting input characters to the stack, waiting till a
matching production can be determined

O Reduce: once a matching production is determined, reduce

Q Follow the rightmost derivation, in a reversed way

= Parse from bottom (the leaves of the parse tree) and work up to the
starting symbol

[Due to the added “shift”

= More powerful
= Can handle left recursive grammars and grammars with left factors

= Less space efficient

Basic Concepts

¢ How to build a predictive bottom-up parser?

> Sentential form
O For a grammar G with start symbol S

A string o Is a sentential form of G If S =* «
* o may contain terminals and nonterminals
» |faisinT*, then a is a sentence of L(G)
O Left sentential form: A sentential form that occurs in the leftmost
derivation of some sentence

O Right sentential form: A sentential form that occurs in the
rightmost derivation of some sentence

Basic Concepts

“+ Example of the sentential form
JE—>E*E|E+E|(E)]|Id
O Leftmost derivation:
EDE+EDE*E+E=d*E+E=id*Id+E=
id*id+E*E=id*id+id*E=id*id+id * id
= All the derived strings are of the left sentential form
O Rightmost derivation
EDE+E=DE+E*E=E+E*Id=E+i1d*Id=
E*E+id*id=E*id+id*id=id*id+id * id
= All the derived strings are of the right sentential form
¢ Another example
dS—>AB,A—->CD,B—>EF
dS= AB=CDB
dS= AB = AEF

Basic Concepts

“ Handle
O Given a rightmost derivation
S=1=27= ... 2% (0AW) = 1 (W) = ... =7,
= v, for all i, are the right sentential forms
= From y, to v,,,, production A — 3 is used S
4 A handle of y,., (= apw) Is
= the production A — 3 and
the position of B in vy,
= Informally, B is the handle

.

The handle 4 — B in the parse tree for apw

Basic Concepts

*» Theorem

Q If G is unambiguous, then every right-sentential form has a unique
handle

* Proof
O G is unambiguous
= = rightmost derivation is unique

O Consider a right-sentential form v,,,
= — A unique production A — B is applied to y,, and applied at a
unigue position
= = A unique handle invy,,,
“» But
Q During the derivation, the production rule is unique

O During the reduction, can we uniquely determine the production
that was used during the derivation?

Basic Concepts

IX

ble pref
O Prefix of a right-sentential form, do not pass the end of the handle

1d
4dE.qg.,

V

e

%

af

IXO0

fof
ESE*E|E+E|(E)|

= Or the pref
Example

e

%

|
|
,éh“*”””””m

:
.

<
2

.
-

|
|

Handles

| '
e |1 e || T
| | il | | L

.

X

i

s

-
i

-
=

,*
P
-

w

W

The handle 4 — B in the parse tree for apw

N
+_Parsing (reduction)

v

/_ _\

Meaning of LR

<

L)

» L: Process input from left to right

* R: Use rightmost derivation, but in reversed order
*EDE+E=DE+E*E=E+E*id=E+id*id
—E*E+id*id=E*id+id*id=id*id+id *id

L)

<

L)

L)

4

L)

L)

E E E
E + E E + E E + E
P ANVANN ANV ANN AN
E*E E* E E*E E* E E * E
. . o
id id id id id id id id id

Bottom-up Parsing

¢ Traverse rightmost derivation backwards

Q If reduction is done arbitrarily
= |t may not reduce to the starting symbol
= Need backtracking

O By follow the path of rightmost derivation
= All the reductions are guaranteed to be “correct”
» Guaranteed to lead to the starting symbol without backtracking

O That is: If it is always possible to correctly find the handle
+ How to find the handle for reduction for each right
sentential form

() Use a stack to keep track of the viable prefix
O The prefix of the handle will always be at the top of the stack

Bottom-up Parsing

¢ Consider a right-sentential form a3w
1 Where A — [and B is a handle (let B = a’w’)
U Right to (3 is always a subsentence (T*)

Handle B (= a’w’”) from oo’ 1S a viable prefix
the top of the stack and
the current input substring Input tokens

| |

L HHThe knowledge for
/ recognizing 3 (or a’)
Is built in the table

stack

A

a’

Parsiar

T

|

Parser table

Bottom-up Parsing

¢ Shift-reduce operations in bottom-up parsing

O Shift the input into the stack
= \Wait for the current handle to complete or to appear
= Or wait for a handle that may complete later

O Reduce
= Once the handle is completely in the stack, then reduce

O The operations are determined by the parsing table

¢ Parsing table includes

O Action table
= Determine the action of shift or reduce
= To shift (current handle is not completely or not yet in stack)
= To reduce (current handle is completely in stack)
O Goto table
= Determine which state to go to next

Parsing Table

¢ ldea
O Build a finite automata based on the grammar
O Follow the automata to construct the parsing tables

¢ Characteristic finite state automata (CFSA)

O Is the basis for building the parsing table
= But the automata is not a part of the parsing table
) States of the automata

= Each state is represented by a set of LR(0) items
0 To keep track of what has already been seen (already in the stack)
- In other words, keep track of the viable prefix
0 To track the possible productions that may be used for reduction
[State transitions

= Fired by grammar symbols (terminals or nonterminals)

Build the Automata

“* LR(0) Item of a grammar G
O Is a production of G with a distinguished position
O Position is used to indicate how much of the handle has already
been seen (in the stack)
= For production S — a B S, items for it include

S—»>eaBS
S—>aeBS
S—>aBeS

S—>aBSe
0 Left of e are the parts of the handle that has already been seen
0 When e reaches the end of the handle = reduction

= For production S — ¢, the single item is
S— e

Building the Automata

¢ Closure function Closure(l)
QI is a set of items for a grammar G
O Every item in I is in Closure(l)
JIfA— oaeBisinClosure(l) and B — v is a production in G
Then add B — e y to Closure(l)
= |fitis not already there
= Meaning
0 When « is in the stack and B is expected next

0 One of the B-production rules may be used to reduce the input to B
- May not be one-step reduction though

O Apply the rule until no more new items can be added

Building the Automata

¢ Goto function Goto(l,X)
O X is a grammar symbol
QIfA—>aeXBisinlthen A —a X e isin Goto(l, X)
= Let J denote the set constructed by this step
Q All items in Closure(J) are in Goto(l, X)

O Meaning
= |f I is the set of valid items for some viable prefix y
= Then goto(l, X) is the set of valid items for the viable prefix yX

Building the Automata

“* Augmented grammar
O G is the grammar and S is the staring symbol

4 Construct G’ by adding production S’ — Sinto G

= S’ is the new starting symbol

" Eg: G S—>alp = G:S 55 S—>alp
O Meaning

= The starting symbol may have several production rules and may be
used in other non-terminal’s production rules

= Add S’ — S to force the starting symbol to have a single production
= When S’ — S e is seen, it is clear that parsing is done

Building the Automata

¢ Given a grammar G
1 Step 1: augment G

O Step 2: initial state
= Construct the valid item set “I” of State O (the initial state)
" AddS’ > e Siinto |
0 All expansions have to start from here

= Compute Closure(l) as the complete valid item set of state O
0 All possible expansions S can lead into

] Step 3:
» From state I, for all grammar symbol X
Construct J = Goto(l, X)
Compute Closure(J)
= Create the new state with the corresponding Goto transition
0 Only if the valid item set is non-empty and does not exist yet

O Repeat Step 3 till no new states can be derived

Building the Automata -- Example

¢ Grammar G:
S—>E
ES>E+TI|T
T—id|(E)
O Step 1: Augment G
S 5>S S—»>E E—SE+T|T T-id|(E)
L Step 2:

= Construct Closure(l,) for Sy Expect to see S next
= Firstaddintol,: S"—> e S
= Compute Closure(l,) = L L Efpeet”
] May have to see E first and
S'—>eS S—oeE reduce it to S using this rule

E—>eE+T E—>eT
T—o>eid T—oe(E)

Building the Automata -- Example

v Step 3 l
a1, S’>eS SeE
= Addinto I,: Goto(l, S) =S’ —> S e E : i'il* TT %E.%(E')T
= No new items to be added to Closure (1,)
41,

= Addinto I,: Goto(lp,E)=S—>Ee E—>Ee+T
= No new items to be added to Closure (l,) J\

When E is moved to the stack (after a reduction),
= Add into I;: Goto(ly, T)=E > T e these two are the possible handles

- S — E e implies a reduction is to be done
= No new items to be added to Closure (I
(1) 0 should be done if seeing Follow(S)

4 |4 E — E o + T implies + is expected to be the next in|
= Addinto 1,: Goto(ly, id)=T —id e
= No new items to be added to Closure (1,)

al,

Building the Automata -- Example

% Step 3 lo
S’>eS S—eE
s E>eE+T E-—eT
= Add into I:: Goto(ly, “(") =T —> (e E) Toeid T—oe(E)

= Closure(ls)

E—>eE+T E—>eT

Toeid T—oe(E) After seeing (, we expect E next

E could be reduced from other
 No more moves from I, E-production rules

O No possible moves from 1, So, put E-productions in the set
a1,
= Addinto Ig: Goto(l,, +) =E > E+eT
= Closure(ls)
T—o>eid T—e(E)
 No possible moves from I; and |,

Building the Automata -- Example

» Step 3

Qi

= Add into I,: Goto(lg, E) =

T—>(Ee) E—>Ee+T

= No new items to be added to Closure (I-)
Q Goto(l;, T) =14
4 Goto(lg, id) =1,
4 Goto(ls, “(”) = I¢
 No more moves from I
a1

= Addinto Ig: Goto(lg, T)=E—>E+Te

= No new items to be added to Closure (lg)
4 Goto(lg, id) =1,
4 Goto(lg, “(”) =I5

Building the Automata -- Example

o Step 3
a1
= Add into l4: Goto(l, “)”) =
T>(E)e
= No new items to be added to Closure (ly)
4 Goto(l,, +) = I
 No possible moves from Ig and I,

S5 eS
S—>eE
E—o>eE+T

S—>Se|l;

Building the Automata -- Example

S—>Ee
E>Ee+T

E—>eT
T—o>eid

T—>e(E)

E>E+eT
»T > eid
T—>e(E)

Y

Building the Automata -- Example

Morem'l'y! you can see how
parsing works on the automata.

Follow(S) = {$}
Follow(E) = {+,), $}
Follow(T) = {+,), $}

lg

Stack Input JAction

D id +id ${S4

D id 4 +id$ [T—id,
Goto[0,T]=3

DT 3 +id$ E-T,
Goto[0,E]=2

DE 2 +id$ 56

DE2+6 id$ S4

DE2+6id4$ T—id,
Goto[6,T]=8

DE2+6T8 $ E—E+T,
Goto[0,E]=2

DE 2 A3 S—E,
Goto[0,S]=1

DS 1 \3 accept

A

E>E+eT
T—>eid

T—>e(E)

S—>Sell;
S
l2lS 5 E e
I E>Ee+T
S’—>eS
S—>eE
E—>eE+T T
E—>eT
T eid id
T—>e(E)
id
(T—>(eE)
E—>eE+T
E—>eT
5| T — e id (
T—>e(E)

A

T—>(E)e

Building the Parsing Table

“ Action [M, N]

= M states
= N tokens

O Actions =
= Shift i: shift the input token into the stack and got to state i
= Reduce i: reduce by the i-th production a—f
= Accept
= Error

“» Goto [M, L]
= M states
= L non-terminals
O Goto[i, j] = x
= Move to state S,

Building the Action Table

4

L)

L)

4

L)

L)

If state |, has item A — o e a 3, and

d Goto(l;, a) = I

O Next symbol in the input is a

Then Action[l;, a] = I,

1 Meaning: Shift “a” to the stack and move to state I;
= Need to wait for the handle to appear or to complete

If State |; has item A — o, e

Then Action[S, b] = reduce using A — «.
O For all b in Follow(A)
L Meaning: The entire handle o Is in the stack, need to reduce

O Need to wait to see Follow(A) to know that the handle is ready
» Eg.S>Ee E—>Ee+T
= Current input can be either Follow(S) or +

Building the Action Table

% Ifstate has S’ —> S, e
 Then Action[S, $] = accept

\/

s Current state

O The action to be taken depends on the current state
= InLL, it depends on the current non-terminal on the top of the stack
* In LR, non-terminal is not known till reduction is done

O Who is keeping track of current state?

O The stack
= Need to push the state also into the stack

» The stack includes the viable prefix and the corresponding state for
each symbol in the viable prefix

Building the Goto Table

< If Goto(l;, A) = |,
% Then Goto[i, A] =]
% Meaning
O When a reduction X — o taken place
O The non-terminal X is added to the stack replacing o

O What should the state be after adding X
O This information is kept in Goto table

Building the Parsing Table -- Example

Follow(S) = {$}
Follow(E) = {+,), $}
Follow(T) = {+,), $}

+ id () $ S | E
0 4 5 2
1 Acc
2 6 S—E
3 | E — E EoT
-hection Talile.,
5 4 5)
6 4 5
7 6 9
8 | EE+T EoE+T | EDE+T
9 | T>(E) T—(E) | T>(E)

LR Parsing Algorithm

¢ Elements

O Parser, parsing tables, stack, input
¢ Initialization

O Append the $ at the end of the input

O Push state 0 into the stack
= On the top of the stack, it is always a state
= |t is the current state of parsing

LR Parsing Algorithm

s Steps
Q If Action[x, a] =y
= X IS the current state, on the top of the stack
= ais the input token
O Then shift a into the stack and put y on top of the stack
4 If Action[x,a] =A > «a
» Note that a is in Follow(A)
O Then
= X IS the current state, on the top of the stack
Pop the handle o and all the state corresponding to o out of the stack
y is the state on the top of the stack after popping
Check Goto table, if Goto[y, A] =z
Push A and then z into the stack

LR Parsing - Example

Stack Input Action
+ |id| () $ S|E D id+id$ [S4
0 415 23| pid4 +1id $ T—id,
1 Acc Goto[0,T]=3
2| 6 S—E DT 3 +id $ E—T,
3|E>T E->T | E5T Goto[0,E]=2
4| T—id Toid | Toid PE?2 +id$ 56
5 5 713 DE2+6 id$ S4
6 5 g| PE2+6id4 B T—id,
71 6 9 Goto[6,T]=8
8 |[E—->E+ E>E+T|ESE+T PE2+6T8 § E—E+T,
T Goto[0,E]=2
9 T—(E) T—(E) | T>(E) DE?2 N3 S—E,
: " Goto[0,S]=1
Rightmost derivation:
SSE=E+T=E+id=>T+id=id+id P51 5 accept

Reverse trace back:

Reduce left most input first.

SLR Parsing

* LR
QO L: input scanned from left
O R: traverse the rightmost derivation path
< LR(0) = SLR(1)
O The LR parser we discussed is LR(0)
= 0in LR: lookahead symbol with the item (will be clear later)
O LR(0) is also called SLR(1)
= Simple LR
» 1in SLR: lookahead symbol

SLR and LL

“ Example:

A— Aala

Follow(A) = {a, $}

d NotLL

Left recursive grammar

O Butis SLR(1)

First a got reduced to A

A—>Aeg »A—>Aae |
A— e Al 2
bia 5 ea
A—ae 14
Stack |Input|Action
a $ 0 aaa$ [S3
0 3
0a3 aa$ |A—a,
1 2 Goto[0,A]=1
2 | A—>Aa| A—>Aa 0A1 aa$ S92
3| Ana | Ana 0Ala2 |a$ |A—Aa
Goto[0,A]=1
DAL a$ |S2
Unclear accepting state | |0A1a2 [$ A—>Aa
Incorrect state transition Goto[0,A]=1

The remaining a’s got reduced with the already generated A (Aa)

In LR, it is reduction based, when seeing ‘a’, ‘A — a’ is the only
choice, after there are A, then reduce Aa by A — Aa

SLR and LL AseaA | IAAA | JAsaAe |
. /A —> @ a
. .
Example' Potential shift-reduce conflict l/ A—>ea D
A—aAla shift: expect to see ‘a’
_ reduce: follow(A) only has $ Stack InputjAction
Follow(A) = {3} => no problem
1 |0 aaa$ [S1
a $ A
Oal aa$ S1
0|1
Oalal a$ Sl
11| A>a |2
» A Oalalal |$ |A—a
= Goto[1,A]=2
Unclear accepting state
The input string is actually acceptable OalalAZ1$ A—aA
O NotLL(1) If [0,$] is accept, will accept € Goto[1,A]=2
= Productions for A have left factors DN 0alA2 |$ same as above
QO Butis SLR(1) 0A? |$

= All “a’s got shifted to stack
= Final ‘a@’, seeing $, got reduced to ‘A’
= All “a’s in stack got reduced with newly generated ‘A’s

SLR and LL

Stack Input |Action
% Example: 0 aaax$ [S3
A —>aAla Follow(A) = {x} 0a3a3 ax$ Sl
B>aB|a Follow(B) = {y} 0a3a3a3 x$ |A—a
Goto[3,A]=6
I, 0a3a3A6 |x$ |A—aA
ly S>AeX —S—>AXe|l, Goto[3,A]=6
S e AX S—>Bey =S Bye|j 0a3A6 x$ same as above
S—>e By |2
A — e aA A—>aeA 0Al x$ S4
A—>ea A—ae |l 0A1x4 $ S—AX
B-—eaB \B—>aoB A—>aAe |l oS .
B—o>ea B—oae ~ AN
A > e aA BoaBe |I; A
A—>ea Unclear accepting state
B—>eaB Potential reduce-reduce conflict| |S does not appear at
But follow(A) and follow(B) the right hand side

B—o>ea
. a)

are different

So, no Goto info

SLR and LL

¢ Continue with the example:
S —> Ax | By
A—aAla
B—>aB]|a
O Not LL(k)
= S — Axand S — By, First(Ax) and First(By) are ‘a’
= Even with large k, First, of both will have “aa...a”

O IsSLR(1)
= No problem with A — aA and A — a, they lead to different states

= No problem with A — aand B — a, just go back to the same state
0 = During parsing, ‘a’ continuously got shifted into the stack
0 When x or y appears, reduce
- By that time, it is clear which rule to use for reduction
- Follow(A) = {x}, if seeing X, reduce with A — a
- Follow(B) = {y}, if seeing y, reduce with B — a

SLR and LL

“ Example:

S Ay B Stack Input |Action
— AX
| By 0 aaax$ [S3
A— Aala :
BB 0a3 aax$ [Reduction
—Ba|a Multiple productions
\
S Aex S—>Axe ||, Have to make decision
I S Aen < too soon,
S—>Aae ||, right at the first ‘a’
S —> e AX l,
IOS—)oBy S—>Bey <S_)By. le
A eAa S—>Bea S—>Bae |I,
A—ea
Follow(S) = {$
g — e Ba A—ae | Jreduce-reduce conflict FoIIowEA)) :‘F{x} a}
a 1
il ||B>ae Follow(B) = {y, a}

in their follow sets

4\‘ Both A and B has ‘a’

SLR and LL

¢ Continue with the example:
S —> Ax | By
A— Aa|a
B—>Bala
O NotLL
= S — Axand S — By, First(Ax) and First(By) are ‘a’

= Even with large k, First, of both A and B will have “aa...a” (A and
B are both in S’s productions)

O Not SLR either
= Not SLR(k), for any k
= Even with large k, Follow, of both A and B will have “aa...a”

reduce-reduce conflict
SLR and LL S—>(eX Both A and B has]/) in
| X —>eA) their follow sets
Example: X—>eB] | —~
p A—e A
S—>X|[Y - B—e
X = A) | B] 2! g; Follow(S) = {$}
Y - Al | B) S—>[eY Follow(X) = {$}
A Y —>eA] Follow(Y) = {$}
—> & Y —>eB) Follow(A) = {],)}
B¢ A—>e Follow(B) = {1,)}
O Not SLR(1) B
dIs LL(l) The rules of each nonterminal have different first symbols
A — ¢ and B — ¢ are from different nonterminals
First(A) = { ¢} ([)] $

First(B) ={ ¢} S>X|[S—oJY
First(X) ={¢,),1}
First(Y)={¢,).1}

First(S)={(, [}

X—>A)| X—>B]

Y—>B)|Y—>A]
A—->eg | A>¢
Boeg | Boe

W(>|<|[X|»n

SLR Parser Family
Follow(S) = {$}
Follow(A) = {b}

¢+ Consider grammar G ’ Follow(B) = {b}
S—>Abc|Bbd g*‘ASb
A—a S_). “l a A—>ae
—>eBbd B -sae
B—oa A > eq
B—oea
reduce-reduce conflict
b is in the follow sets
of both Aand B
0 G is SLR(2)

= |ookahead two characters will resolve the conflict
= Follow,(A) = {bc}, Follow,(B) = {bd}

= Action[4,bc]=A —>a

= Action[4,bd]=B —> a

SLR Parser Family

¢ Consider grammar G
S — A b*lc|B b*!d
A —a
B—a
O G is SLR(K) not SLR(k-1)
= Need to lookahead k characters in the Follow set
= Follow,_,(A) = {b*'}, Follow,_,(B) = {b*'}
= Follow,(A) = {b*c}, Follow,(B) = {b*'d}

SLR and LR

¢ Consider grammar G
S—>L=R
S—>R
R—>L
L—-*R
L —id

shift-reduce conflict

the shift rule expect =
SLR and LR =is in R’s follow set
|3
R
S—>Se |1 S 3>L=eR
S _ L>-+*R
|25_)|_.:F’Q/R_)°_|— L
R Le L—eid

S’ >eS
S—»>eL=R
S—>eR

Lo>e*R
R—oeL
Loeid

S—>L=R

R—>L
L->*R
L—id

Follow(S) = {$}
Follow(L) = {=, $}
Follow(R) = {=, $}

id| = $
0 9
1 Acc
2 R—>L | R-L

3

3 9
4 S—»L=R
5 R—-L | RoL
6 S—R
7 9
8 R—>*L| R—>*L
9 L—id | L—id

SLR and LR

«s» Grammar G has shift-reduce conflict

O Not helpful by looking further ahead the Follow set
= Follow,(L) = {$, =id$, =*id$, =**id$, ..., =*...*id$, =*...*id,
=*...*}
= Follow,(R) = Follow,(L)

= This is not SLR(K)
0 Further lookahead will not help with distinguishing
Follow,(R) from Follow,(L)

SLR and LR

“* What is the problem?
O Lookahead information is too crude
O Need to distinguish
» [fL—>*RisfromS =L =R = *R =R, then Follow(R) = {=, $}
» [fL—>*RisfromS =R = L = *R, then Follow(R) = {$}
¢ Solution:
O Carry the specific lookahead information with the LR(0) item
O The item becomes LR(1) item

O Use the lookahead symbol(s) with the item to identify the correct
reduction rule to apply

¢+ Canonical LR Parsing
O The parsing scheme based on LR(1) item

LR(1) Item

“* LR(1) Item of a grammar G
U [A—a e f3, 3]
d A—>a e [isan LR(0) item
O a is the lookahead symbol (a terminal in Follow(A))
U [A—a e, a] implies
= S =*J0Ay = day

= aisin First(y$)
= |.e., “a” follows A in a right sentential form

“* When [A—a. e, a] Is In the state
— Reduction (same as SLR)
O But only if “a” is seen in the input string

¢ Next, need to define Closure and Goto functions for LR(1)
items

Building the Automata

¢ Changes to Closure(l)
JIfA— oaeBfisinClosure(l) and B — v is a production in G
Then add B — e y to Closure(l)
—
dIf[A—> aeBf,a]isinClosure(l) and B — y is a production in G
Then add [B — e vy, c] to Closure(l)
= Forall c, ¢ € First(pa)
¢+ Changes to Goto(l,X)
QIfA—>aeXBisinlthen A —a X e isin Goto(l, X)
—
JIf[A—>oae XB,a]isinlthen [A —>a X e 3, a] is in Goto(l, X)
= Simply carry the lookahead symbol over

Building the Action Table

¢ |If state has item [A > a. e a 3, b]

O Add the shift action to the Action table (same as before)
<+ If state has [S’ — S, e, $]

O Add accept to Action table (same as before)
“ If State |; has item [A —> o e, D]

O Action[S, b] = reduce using A —» o

= Not for all terminals in Follow(A)
= Only for all terminals in the lookahead part of the item

«» Goto table construction is the same as before

LR Parsing

/ S’—)S',$

S>-S5,$
S—»-L=R,$
S»>-R$
Lo>-*R, =
Lo>-id, =
R->-L,$
L->-*R,$
L—>-id, $

S>L-=R,$

R->L-$

S»>L="R,$
Ro>-L,$
Lo>-*R,$

A 4

L—>-id $

\ 4

S>R-$

R>L-$

L->*R$
R—>-L,$
L>-*R,$
Lo>-id, $

A 4

S>L=R-$

Ko longer has conflict

Lo>id-$

R->L-=%

Lo>*"R,=%$
R—-L,=$
Lo>-*R, =%
L—-id, =$

D

\4

Lo>*R-$

Lo>id- =%

A 4

L>*R-=$

$: reduce withR —» L
=: shift

LR Parsing

\/

“* The parsing algorithm is the same for the LR family
O Only the table is different

* LR is more powerful
O An SLR(1) grammar is always an LR(1), but not vice versa

L)

L)

d LR(Q)
= Use one lookahead symbol in the item
0 LR(k) reduce-reduce
= Use k lookahead symbols in the item B%Qfé'gtcg'nlﬁi(tli%
O LR(2) grammar LR(2)
S>eS5 %
S—>Abc|Bbd S—>eAbc $ - \{
A—a lh|S—>eBbd,$ a_jA—>as e
’ B—>ae,bd
B—>a A—ea bc I
= SLR(2) also B—>ea bd *

LR Parsing

“* LR is more powerful than SLR

¢ But LR has a larger number of states

O Higher space consuming

= Common programming language has hundreds of states and
hundreds of terminals

= Approximately 100 X 100 table size

O Can the number of states in LR be reduced?
= Some states in LR are duplicated and can be merged

 LALR

O LookAhead LR

O Try to merge states in LR(1) automata

O When the core items in two LR(1) states are the same
= merge them

LALR Parsing

/ S’—)S',$

S>-S5,$
S—»>-L=R,$
S»>-R$
Lo>-*R, =
L—-id, =
R->-L,$
L->-*R,$
L—>-id, $

A 4

S>L=R-$

till no problem
The follow set is carried
long with the item
hich resolves the problem
f unwanted follow symbol

S—»>L=-R$
R—>-L$
:S—>L':R,$ o L>-*R,$
Ro>L%$ L—>-id $
N
» S>R-$
R>L-$
L->*R$
R—>-L,$

Lo>-*R,$
L—>-id $

L >id-$ |

Lo>-*R, =%
L—-id, =$

R->L-=%
L >*-R=$
R—--L, =%

Each pair of states in
these two blocks have
the same core items

= Can be fully merged

L—>id- =%

LALR Parsing

R

»» Can merging states introduce conflicts?
O Cannot introduce shift-reduce conflict
O May introduce reduce-reduce conflict

¢+ Cannot introduce shift-reduce conflict?
O Assume: two LR states 11, 12 are merged into an LALR state |

O If conflict, | must have items

= [A—>ae,a]land [B — 3 eao, b]
0 Infact, o and B have to be the same, otherwise, they won’t come to the
same state
= If they are from different states, they are different core items, cannot
be merged into |
= Ifllhas[A—> ae,a]land [B — a ebd, c]and 12 has [A — a e, d]
and [B — o e b9, €]

0 To have a conflict, we should have b = d or b = a, shift-reduce conflicts
were there in 11 and 12 already!

LALR Parsing

¢ Introducing reduce-reduce conflict?
S — aAd | bBd | bAe | aBe

A—>cC B—->c
11: S’ > S e $
_ 13:S > aAed $
10: Merge 15 and 19
S’ —>eS $ 12: _
L [15-9: A —c e, dle
S —>ehBd,$| *S—>aeBe$. i B—>ce, dle
S—).bAe,$ A_>.C,d I5A_)C.,d - y
S—)OaBe,$ B-—>ec,e B-—>cCe,e
16: I7:S—> bAee, $
S—>beAe $ Reduce-reduce
—>beBd $I18:S—>bBed,$ Conflict
A—>eC, €
LR(l) B—>ec,d 19:A—cCe, e
B—>ce, d

LALR Parsing

L)

L)

S—>CC
C—>cC
C —>d

S°>eS,$

S—>eCC,$
C —>ecC,c/d
C—>ed,c/d

S—>Se$ |l

Another LALR example

bils >CeC $
»C —>ecC,$

|3 »>

C—oed$

First(C) = {c, d}
First(S) = {c, d}
Follow(S) = {$}
Follow(C) = {c,d,$}

C—oceC,cld/s

4

C—oecC, c/d/g

C—ed,c/d /$;\>
C

A 4

A

[C—>de,c/d /$

»C —>cCe, c/d/$

l5

S—>CCe$ |l
C d $

0 3 5

1 Acc
2 3 5

3 3 5

4 |C—-cC|C—cC|C—cC
5/|C—»d|C—d| C—d
6 S—»CC

LALR Parsing

\/

¢ Delay error detection?

= S>CC,C—>cC,C—d
= Parse string ccd$

O LR stack
= 0c3c3d5, seeing $ = reduce using C — d only if seeing {c, d}, not $
= error
S’>eS,$ S—>Se$ |l lbis>cecC,$ S—>CCe$ |lg
l,|S—>*CC,$ »C —>ecC,$
C—>ecC,c/d Coed $
C— e d, c/d I, ’ l,
C—>ceC,c/d s C—>ceC$ s
C — e cC, c/d »C —> cC e, c/d C—oecC$ »C >cCe $
C—>od,c/d'\> C—>-d$'\>
C C

A

A 4

ICodecd |l Codes |l

LALR Parsing

¢ Delay error detection?

O LALR stack

0c3c3d5, seeing $ = reduce using C — d, goto 4 (0c3c3C4)
0c3c3C4, seeing $ = Reduce by C — cC, goto 4 (0c3C4)
0c3C4, seeing $ = Reduce by C — cC, goto 2 (0C2)

0C2, seeing $ = error, only allow seeing ¢, d, C

S>eS $

S—>eCC,$
C —>ecC,c/d
C—>ed,c/d

S—>Se$

[

N

S—>Ce(C$
CoecC$

L,

N

Coed $

S—>CCe$

C—o>ceC,c/d$
C > ecC, c/d/$

C—oed, C/d/$'\>
C

A 4

C—>de, c/d$

l

» C —> cC e, c/d/$

l5

A

LALR Parsing

< LALR
O Can also be constructed using SLR procedure
O But add lookahead symbols

 SLR, LR, LALR
O LR is most powerful and SLR is least powerful

O LALR(1) is most commonly used
= All reasonable languages are LALR(1)
» Has the same number of states as SLR(1)

Grammar Class Hierarchy

Unambiguous Grammars Ambiguous
Grammars

LALR(1)

SLR

LR(0)

Bottom-up Parsing -- Summary

“* Read textbook Sections 4.5-4.6
+ Bottom-up Parsing
0 Handle and viable prefix
O SLR parsing
= SLR(1) = LR(0)
= SLR(K)
O Canonical LR Parsing
= LR(1)
= LR(K)
d LALR

